146 research outputs found

    Iterative Log Thresholding

    Full text link
    Sparse reconstruction approaches using the re-weighted l1-penalty have been shown, both empirically and theoretically, to provide a significant improvement in recovering sparse signals in comparison to the l1-relaxation. However, numerical optimization of such penalties involves solving problems with l1-norms in the objective many times. Using the direct link of reweighted l1-penalties to the concave log-regularizer for sparsity, we derive a simple prox-like algorithm for the log-regularized formulation. The proximal splitting step of the algorithm has a closed form solution, and we call the algorithm 'log-thresholding' in analogy to soft thresholding for the l1-penalty. We establish convergence results, and demonstrate that log-thresholding provides more accurate sparse reconstructions compared to both soft and hard thresholding. Furthermore, the approach can be directly extended to optimization over matrices with penalty for rank (i.e. the nuclear norm penalty and its re-weigthed version), where we suggest a singular-value log-thresholding approach.Comment: 5 pages, 4 figure

    Smoothing Dynamic Systems with State-Dependent Covariance Matrices

    Full text link
    Kalman filtering and smoothing algorithms are used in many areas, including tracking and navigation, medical applications, and financial trend filtering. One of the basic assumptions required to apply the Kalman smoothing framework is that error covariance matrices are known and given. In this paper, we study a general class of inference problems where covariance matrices can depend functionally on unknown parameters. In the Kalman framework, this allows modeling situations where covariance matrices may depend functionally on the state sequence being estimated. We present an extended formulation and generalized Gauss-Newton (GGN) algorithm for inference in this context. When applied to dynamic systems inference, we show the algorithm can be implemented to preserve the computational efficiency of the classic Kalman smoother. The new approach is illustrated with a synthetic numerical example.Comment: 8 pages, 1 figur
    • …
    corecore